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ABSTRACT

Many algorithms for polync nial least squares approximation of real-valued function on a
real interval determine polynomials that are orthogonal with respect to a suitable inner prod-
uct defined on this interval. Analogously, it is convenient to compute Szeg6 polynomials, i.e.,
polynomials that are orthogonal with respect to an inner product on the unit circle, when ap.
proximating a complex-valued function on the unit circle in the least squares sense. It may also
be appropriate to determine Szeg6 polynomials in algorithms for least squares approximation
of real-valued periodic functions by trigonometric polynomials. This paper is concerned with
Szeg6 polynomials that are defined by a discrete inner product on the unit circle. We present
a scheme for downdating the Szeg6 polynomials and given lei -t squares approximant when a
node is deleted from the inner product. Our scheme uses the QR algorithm for unitary upper
Ilessenberg matrices. We describe a data-fitting application that illustrates how our scheme can
be combined with the fast Fourier transform algorithm when the given nodes are not equidistant.
Application to sliding windows is discussed also.
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Downclating of Szeg6" Polynomials
and Data Fitting Applications

G.S. Ainma~r' W.B. Graggt L. Reichel

Abstract

Many algorithms for polynomial least squares approximation of a real-valued function
on a real interval determinc polynomials that are orthogonal with respect to a suitable inner
prodtict defined on this interval. Analogously, it is convenient to compute Szeg6 polynomials,
i.e., polynomials that are orthogonal with respect to an inner product on the unit circle,
when approximiating a enniplex-valtied function on the unit circle in he least squares sense,
It may also be appropriate to determine Szeg6 polynomials in algorithms for least squares
aipproximatioii of real-valuied periodic functions by trigonometric polynomials. This paper
k. concernted wit i Szcgo polynomials that Lire defined by a discrete inner product on the
unit circle, W, present a tchieme for downdating the Szeg6 polynomials and given least
stitiares approximmait when a node is deleted from the inner product. Our scheme uses the
QI?.algoritmi I'M uitary uplper Ilesnceiber-g matrices. We describe a data-fitting applicationi
that illustrate., how our schemne can he combinied with tho~ fast Fourier transform algorithmn
when the givcii iodcs aire niot cquidistant, Application Lu liding wivdows is dliscussedI also.

I Introduction

rUt (4kl2'I be it set of distinct nlodes on t~w unit circle and 14t {w)l be a iet of positive

weights. Introdue for conlplex-valtied functions gi and h defined ia i hle nodes the discrete inner

p~rodulct or, t he unit circle
fit

k=1

where the bar denotes complex conjugation. Polynomials that are orthogonal with respect to

an iiiner prodoct on the unit che ce are known as. S.%:d polynomials. Let d~}T)(enote the

family of GrtlhonoflIIial Szeg6 polYnomials wvith respect to the inner product (1. 1), % here (5, is of

degree j and iab it positive leading coefficient. rhe polynomials 46j sat k;fy the Szcg6 'wcurrencc

bo~z) = 0(C-) = PU

iDupartmcnt, of Nhu eiu.~atical Sciences. Nortucin lliwisu V.niversity, De~alb, IL 60115.
tDcpartniciti of \Id Ihcuuauics. Navul Po~u iqad nale chool. M ontereY, CA. 9-19t0.
'Department of Mathcinatcs kuid Computer Scie. IKeut State Uiv~ersity, Kent, Oil 44*242. Research

supiported by a National Re. earch Council fellowship miud NSF grant DNIS-9002884.



( = :oi(:)+j+i I(:), 05j<m-1. (1.2)

where the recurrence coefficients -j+i E C and ar+, > 0 are determined by

-/+ -) ,(1.3)
CTJ+l = i=I-fj+1l") I/ 0 5< j < in.

6j+i = A/+l.

See, for example, Greiander and Szeg6 [4. Chal)ter 2). It can be shown by induction that the

auxiliary polynomials j in (1.2) satisfy

= : -- :J,(1/:), 0 < j < in,

where (:) denotes the polynomrial obtained biy conjugating the coefficients of in(:) i the

I)ower basis. Since the imeasure on the unit circle that defines (1.1) has precisdy in points of

increase, we have I- 1 < I for 1 5 j < in and [,, = 1. The coefficients y,, are known as Schur

parameters, and we refer to the a, as the associated conplenicntary parameters. Although the

coinl)lernentary parameters are matheinatically redundiant, we retain them durini; cornputations

ii order to avoid numerical instability. Note froin (1.3) that o is the total weight of the measure

that defines (1.1), and that 6-1 is the leading coelficient of i for 0 5 j < m.

1[or later reference we also define the polynomial

on(:) = :o-i(:) + '&1-1n(Z). (1.4)

Theii
Ilk

o,,,(:) = ,TL, 1H(=- Zk), (1.5)
tk=t

In particular, (0,, Oi) = 0 for 0 _ j < m.

Example 1.1. Let zk ;= exp(2,ri(k - 1)/7m) and w2 := I for I < k < in. where i

'hen o = M 1/2, aj = I and -j = 0 for I < j < in. and 1m = 1. Thus. 45j() = nm-1/2 : for

0 < j < in, and e = ,-1/2(,?n - 1). C3

litrodluce the discrete l1olliu
It.qfl,, := /). "" /2,



and let IT,-, denote the set of all polviioimial-, of degree at most n -- 1. Let f be a given

complex-valued function defined at the nodes :I:. and consider the problem of computing the

polynomial p,._, E IT,,. for some n < In. that satisfies

If - P.-iIll. = rinI - l IL, (1.6)

The solution p,,-, of the minimization problem ( 1.6) can be expressed conveniently in terms of

the Szeg6 polynomials 6j as follows. ittroduce the vector

f - [w f(-:t ). w2 '(").,,,f(: m )]T , (1.7)

and the M x 11 matriX Q = [qt-J]

(j,'. := o-I(:)w'k, i </,'<_ . l <j<_n. (1.8)

where W'k :- vik-. Note that the matrix Q hao ,rthioiormal columns, i.e.. Q'Q = I. where

W = (. Let the vector a = [',.. I)(.,,]" be dlefined by

a Vf. (1.9)

1Then the polynomnial p,_ can le written as

= -. (1.10)

where the Fourier coeficicen s aj are itdepedent of it.

It is the purpose of this paper to present "an algorithm for downdating the recurrence coef.

licieuts "/j and ao. as well as the Fourier coellicietts ii. when an nede-weight pair is removed

from the inner product (1.1). Our algorithm is based on the observation that the columns of the

matrix Q are cigivectors of a unitary Hiessenh,,urg matrix defined by the recurrence relations

(1.2)-(1.3). This ,nakes it ,ossible to dowidate I lie coellicients -j, aj and a, by applying the

QI. algorithm for u nitary llesseciberg ma tric(,., pr ew('SIe d in [5], with the tiode to be remnoved

as shift. Details are described in Section 2.

We remark that tlie problem of iipdalij i l,, coelficievits 3 , aj and n whein a miode-weight

pair {...+a, I+ } is added to the inner prod uct ( 1.1 ) is discussed in [8]. The updating problem

can l)e solved by using an inverse Ql. algorithmn for unitary llessenberg matrices: see [8, 1].

Assume that we wish to determine tIhe po!:.nomial ,_ given by (1.9)-(1.10) with n < m

whet the set of In todes in the inner product (1.1) is a subset of the set of A' equidistant



I-ih : N .II ts w2 . ar all ,. ae to be

nodes {exp(2,rij'/.)}-o with : - n > 0 small., The weights w are all assumed to be

unity. Then it may be attractive to compute P,_ by lirsi computing the polynomial interpolant

Pv-i E 1l,v-I on the set of N equidistant nodes by u.ing the fast Fourier transform (FFT)

idgorithm. and then determining Pnt-, front j'._.. b.% applying onr'downdating scheme. The

Fourier coefficients of the polynomial approxinant p- 1 are then equal to the first n Fourier

coefficients of pm-i. This approach can shnilarly be applied to trigonometric polynomials.

Details are described in Section 3. Computed examples are presented in Section 4 and Section 5

contains a summary.

Updating and downdating of polynomials ipproximants pn-, when all the nodes zk are

real has received considerable attention in the literal ure: see Scott and Scott [9] and references

there. A collection of algorithms for updating and dowudating based on orthogonal polynomials

is presented by LElhy et l. [3]..Algorithms for updatinl; are also considered in [6, 7].

2 Downdating of Szeg8 polynomials

The connection between the Szeg6 polynonials determined by (1.1) and a unitary lessen-

berg matrix can be seen as follows. Using the basis of Szegd polynomials, we can write

((2.1)

where ilj+lj = (., for 1 < j < 1. 11nd i,+t. = I. L.et 14 : 0 for 3 < j+2 :5 k < m, and define

the upper I[cssenberg _m1aItriX II = k i11.=l, \ l.,o deli ihe unitary matrix U = [/1ki]7 by

110 , := O , .( -l ,' (2 .2)

Substitution of z = zk, 1 < k < in. into (2.1) 'i lds the equation

JITUT = 1:'r.\ (2.3)

or, equivalently,

I! = U'U, (2.4)

where A := dia[:m.:.:,. ,].: Thus. I! is a nil ary iipper liessenberg matrix with positive

.-ubdiagonal elements that is uiiniquely dleterihied by Ihe inner product (1.1). Also note that

the first i columnis of U amake uip tihe matix ) delilled b% ( .S)...lgorithmis for the solution of

the least-squares problem (l .6)can hIlierefore I, ' ie\,d ill l erms of the specdral (CCollIpositiott

(2.-),



. ... .- S, . ..... - -| - -Ali

It is fairly straightforward to show. by using the recurrence "relations (1.2)-(1.3), that H

can be written as aproduct of in elemientary unit'.ry transformations that are defined by the

recursion coeificients 'j and a. 'lbr the oa. We have

I1 = Gi(i)( 2 )''..,-('fn-)G'(7,), (2.5)

where the G (yj), I < j < in. are in x in Givens matrices

I- I

-7.) 0'

(j)1

;,t1(l G ',,b )is the diitgonal matrix

%Ve refer to the representation (2.5) as the Schur parametric form of H.

The development of efficient algorithms for eigenproblems for unitary lHessenberg matrices is

facilitated by the fact that every unitary upper lfessenbcrg matrix with nonnegative subdiagonal

elements has a uttiiie Schur parameterization.l For example, when the implicitly shifted QR

algorithm is applied to find the spectrat decompositioii of a unitary l[essenberg matrix, a

sequlenCe of interittecliate unitary Ilfessitlbrg matrices is generated that converges to a diagonal

matrix. In [5] the QR algorithm for unitary lessenberg matrices is formulated in terms of the

Schur parameters of the internC(liate imatrices., This results in an implementation that requires

only O(m) arithmetic operations per iteration on a matrix of order m.

Assume for the moment that the matrix If and scaling factor as are given, but that the

nodes zt. and weights wk of the inner product (1.1) are not explicitly known. Then it follows

from (2.-) and (2.2) that the nodes z., are the eigenvalues of H, while the normalized weight

W(k/co is equal to the first component of the normalized elgenvector corresponding with zk. (We

,issu me that each vil-l ve(:tor is scah'd Ito Ih ave iit Ei lidean leigth and a nonnegative first

component.) The tiitary llfcssenberg QU alihoit hi cat he used to compute the matrix A and

vector Uej. without (omi)utimg the , ,of ol. %it ih mt more than 0(m) arithmmetic operations

1wr iteration. ''llh i,, houut thik p.i1e, ei dlino, ehe' xi vector in C'". The Qit algorithm

determines one uode-weight pair at a imc. atit for each pair computed the order of the unitary



tipper Hessenberg matrix is reduced by one. so that the reduced Hessenberg matri.. corresponds

with the node-iveight pairs that have not yet been determined.

We remark that in the case that the nodes of the discrete inner prodm1~t are real, then the

analogue of the matrix f1 is a real symmetric triliagoflal matrix T with positive subdiagonal

elements. This matrix T contains recurrence coefficiets for orthonormal polynomials that

satisfy a three-termt recurrence relation. Golub and WVelsch [41 proposed the use of the QRI

algorithm for symmetric tridiagonal matrices for thme computation of the node.-vcight pairs

associated with T. This algorithm also determines one niode-weight pair at a time. and reduces

the order of T when such a pair has been found.

Conversely, the constr~uction of I! from the inner p~roduct (1.1) can he regarded as an

inverse cigenvalue p~roblem. In p~articular, given the mnatrix A = (liag[zi, :.-.,..m) and the

vector qo := a [wj, 112.--1r T,,T we can perforin a sequence of elementary unitary similarity

transformations whose composition results in an in x in unitary matrix U such that the matrix

ont the right. hand o1

[ ej 1i'] A~ Iv [ 0 V [* 1 (2.6)

is of tipper llessenberg form wvith positivE' subniagonal elvinents. (The *rcprese'zts an arbitrary

scalar that remains unchanged.) lIn other words, Uq0 = cue,, and U8AU is -, unitary tipper

llessenberg matrix II., Consequently, 11 is the miaiti. corresponding with the iner product

(1.1).

The transformation of A to 11 can be pei I''rmed uising 0(m2) arithmetic operations with

the inverse unitary Qft ( ILQR) algorith~am described ini [1)., The 1UQR algorithim is an updating

p~rocedure because it incorporates ntode-weighit pairs one at a time. After the j' stage of the

algorithm has been exectcd, the j xj .1 itary lles~wnherg matrix corresponding with time inner

product (letermiiec by the first j nok'o, aud wits h las beenm obtained.

lit (8) the approxiimatiou problem ( 1.6) is solved uising the IUQR algorithm to construct

the Schur parameters of the unitary Ilhssenberg mnatrix It. The elementary unitary mnatrices

are accumulated against the vector f (hiring the algorithmn to obtain the vector tid Fourier

coelficieitts a = Uf withmout explicitly Ibrmnimig U. In this way we obtaini the interpolating

polynomial Pm-I that is the solution of (1.6) with it = rn in 0(m2) arithmetic operations. Of

course, the partial sumis of the Fourier expansion o' the interpolating polynomial yields the

solution (1.10) of (1.6) for each it < in. Moreover, if one is interested in computing only p,-

6



for n < in. then the algorithm can be ciw.tailcd so that only O(mn) arithmetic operations are

required for the computation of the parameters { :j} =1. {aj}!=0, and {aj} =. See [8] for

details.

Now assume that we have solved the Iast-.s(piares problem (1.6) with n = in by the method

described in [81. so that sets of Sclur parainei(rs " ,=t ad of complenientary parameters

{ 4j}'n= corresponding with the inner product ( 1. 1). as well as sets of Fourier coefficients {aj)'P.

of the interpolatinll polynomial pm-I are explicitly known,. In the downdating problem, we seek

Io solve the correspon|ditig least-squares problet| wit i one term deleted from (1.1). It particular,

let be tlie node that is to be deleted From the in ner product (1.1) and let t& be the square-root

of the associated weight, lit order to ,iil)iy soane formntlas that follow, we assume without

loss of generality that Z = : and =,,.

introduce the in ner p10ro1't

(y/,,),,.- := 7-7 ., ),,. (2.7)

i=1

We seek the polynomial i,-1 E I t l uch that

If - in-jll,,,- = 1 f f - Pl -i.,- . (2.8)

Denote the family of orthonormal Szeg6 polviiiiiial, wit li positive leading coefficient associaed

with (2.7) b)y' (0 Also let and , )"'- (j,- enote the sets of recrrence coefficients

for the 5,, ail(l let 'A :- liag[: ...... I,- a , ,U = , ,' . ,, _]r ,h,,e , = i-c, -

ib) 1/ is the total weight of the noasure tIt deflines (2.7). Then from the above discussion,

there is a unique uttuitary ltessenberg matrix iI a(l a tunlque unitary matrix U such that

t= (2.9)

where 6, deir-tc.; the j"' axis vector in C' - 1. Moreover. the rocirrence coefficients j, and
4F .7 are the Schur pa'aI1letrs and coniplementary pariameters. re..i,,.ctively, of /., Tile optimal

polyiloimial is leln Igi, vei 1).
P IC/i,,,_.(Z1 = _ ;_()

=1

. . . . . .. . . . . . . . . . . . . .. . .. .. . . . . . .. .. . . . .. . . .. . . . . . . . . ... . . . ... . .. .. . . . . . .. . . . . . .. . .. . . .. ... . ... . . . . . . . . . . . . .. . . . . . . . . . . . . . ... . . . .. . . . . .



where the vector of Fourier coefficients 4 =. ....... clT is given by i := Ut and
i":= [Wl/(ZI) ..... t' -fz - I.

Our scheme for downdating is based on the obhervation that il and 0 can be computed

from H and U by applying one step of the QR algorithm with "ultimate" shift . together with

some permutation similarity transformations. to determine a unitary matrix 14' such that

0 IV"0 toe, /1 0 It, &06 1o 1 0 (2.10)
tb 0 .(.

Then
[ (3 O]=UIVoL

OT I

and

[ ] =i1'a.=) (2.11)

Thus, the downdated .ourier coefflcients k. mre obtained by accumulating each elementary

unitary transformation against a. An efficiet implemuentation is obtained by using the QR

algorithm for unitary liessenberg mnatrices described in [5].
We now assume that :1 for some :, I 5 I < in, and let tb := wt. One step of the QR

algorithm with shift 4alplied to tie matrix i determines a unitary upper llessenberg matrix

1/, such that

I' := = [ ll '=

because .4 is an eigenvalue of .1. It is easy to see. however, that the QR algorithm applied to II

will not yield the required 1, because the veclor jTue, will :aot be transformed as required by

(2.10). On the other hand, an RQ algorithm for ii. in which the transforming matrix fV" would

be a product of Givens matrices in the reverse order of (2.12) below, would yield the desired

similarity transformation.,

Instead of modifyi,,g the unitary llesseaberg Qil algorit hm of [5] to perform an RQ iteration,

we apply the QR algorithm to the uitary I,..enberg matrix i P := .IIITJ, where J =

[e,em- i.e] is time rcI'c,.sal /)I.I.I ofl 0dvr cm. I is- easily seen that if It is given by (2.5),

then
UiP=G(' 10,.2 ' =., Gi( i, )(;2,( % ) . . .(,,,,_ ( ",,_ )G,,(jn:,),

w1here . = ,,., for I < j < in a, , = . The ;pplication of 1 he Q aporithm on

i1P is equivalent with that of the RQ algorithim on I. One iteration of the QR algorithm with



shift applied to IP generates a unitary upper lfesseanberg matrix

V = 0101 )G102) I( -n(m-I )G$ (6m) (2.12)

such that

4 "I11ev = [ r ii0mil tha 
..1 31 I (2.13)

Moreover, &m can be taken to I)e an arbitrary utitnodular number because deflation has taken

place (3]. Let rj := (1 - 15,12)."2 denote the complementary parameter to 6. for 1 5 j < m.

Observe that only the last two components of l'C7oem are nonzero, and that 16mj = 1 can

be chosen so that these two Corl)OlleultS are giveu by

i1 v,,_l 6,,-1 1a

l'iu'ally, we tratisform the right-lhiad ,i(le of (2.13) by shiilarity using J 0 where J is

the jeversal matrix of odcrt m - 1, aud Iraisj o.c the result. In this way we transform HI to

1*"/1 11 " /1 = 0 J, where I11 = .If" J 0 Morcover, IV'aoe = ,andI1"!11' 0oT 1 : 6n l

by the uniqueness of the reduction, H" = fI, aor j = 0, and I,"'-flao bt. The vector of

Fourier coefficients A is then determined from (2.11) by applying Wo to a incrementally.

Observe that our downdating procedure requires knowledge of the node to be deleted but not

of the corresponding weight. We can therefore compare the computed value of tb to the actual

value wi in order to assess the accuracy of the computations. If tb is not close to wl, then the

downdatwd lpolyniomials 0, ind tl n-2 iight not he accurate. Another accuracy check is provided

by I Ie Comlpted va lIe of p,' iln the alIorthiln. his quantity is the minll diagonal element of

the upper triagular matrix in the Qit fiactori/aa iou of I!1 - iI, which is mathematically zero

whe ; is an eigeuavalue of I. If the ( lompitilu value of Pm is not "tiny", then the computed

downdated polynomial might be inaccurate. \Vo iherefore consider pm and wb as being part of

the output of the algoorithm.

4



Algorithm 2.1 (Downdating by removing the node-weight pair {'.tb} )
Input: m. {7jti-1, {L73}=, {-= 0,:

Output: 0: x-I{, .,1.-=,-
[7U1PUIn[!J}=jL P' J=1

60 := i;

forj:= 1,2,..., n- 1 do

Pi (:; + I-^6)-I + 'YJ

ifj > 2 then a,-, rj-Ilj"
r, (;= /P ,;

.. 6%+ ?JQi./~

js : -6~ + h - )/
L ij: = 71i, + JI Z+t;

klMn-i . + ^fJ t - I:

u't =I rin-iP; I!= Vrn-iko; r&(0

in-i - i/1j,,n-i ; a,,n-I := 0: (parameter correctioL)

The algorithin overwrites the Fotilier C(oeCiCiil , {( j }.,'= with interiil(lia t (j liItit WS. Al-

gorithm 2.1 requires O(in) arithnetic Operatioios ( +. -, *, / ) and the evaltiationi or in - I square

roots.

\Ve have already noted that if the nodes zk are real, then the analogue of the ,matrix 11

is a real symmetric tridiagonal matrix T with l)ositive subdiagonal elements. Similarly with

Algorithmi 2.1, downdating of the orthonornial polynomials associated wi h T, as well as of

Fourier coefficients, can be carried out by algorithims based on the QR algorithm for symmetric

iridiagoial matrices., This observation may be snew.

lit certain data-fitting applications it nay be (lesirable to update the poiynomial Pm,

givet, by ( 1.9)-(1.10) with n = in. by replacing certain node-weight pairs. This can be carried

out by successively reiloviig an node-weight 1) dlr by klgorithut 2.1, and then adding a new

10



node-weight pair using one step of Algorithn :.1 ill [s]. This combination of algorithms yields

a sliding window icheme.,

3 Downdating and the FFT algorithm

\Vhen the nodes :& are equidistant o. the unit circle and all weights w are unity, then

interpolation and least.squares approximation ofa given function by algebraic or trigonometric

polynomials can be carried out rapidly by the IFT algorithm. This section describes in some

detail how our downdating scheme may be combined with the FFT algorithm to achieve rapid

schemes for interpolation when the nodes are essentially equidistant. More precisely, we will

consider the case when the set of nodes l n the inner product (1.1) is a subset of the

set of equidistauit iiodes {exp(2, ij/N)};7.'-, where ii := N - in is a small positive integer, In

01ur operation Coullit wo will at.sllme that t iq idelwii(leitt of in. The weights irk in (. .1) are all

asslilled to be llity.

I.et f (Cliot (! a1 i li)i:X-,.i l [ fiicl i. , i '- u , .i f(zk), I C I" < t. ,ire explicitlV

Iklnown. WVe remiark tht ,a t'piesentatioit of I li, interpolatitig polynmial pm-i E 1 1 m. ill

Newton form call be computed in 0(im") arithmietic ope,'ations. The \"andermonde solver by

Bj6rck and Pereyra [:2] can be used to determine a representation of p'-j in terms of the

monomial 1asis, and requires also O(m ") arithimetic operations. Our scheme only requires

0(m log m ) arithmetic operations aud yields a representation of pm-, ili the basis of Szeg6

lolynlomials.

Let {': = t dente thi compleme{t Of le t {k4) 1 in p {exl)(2, ij/N)}j\'1 . and let

0. 1 < k < i;. This. f is defiued at the N ioots of unity exp(2ri(j- I I/N), 1 < j < .,

alid We call coinput tile Fourier coefficients of tile polynlomnial PN- E I[t\-I that iuterpolates

f at these nodes by the ITT algorithm in 0( Y- log N) = 0(m log m I arithmetic operations.

Using the Schur paraineters given in Exainple 1.1. we apply Algorithm 2.1 n¢ times to eliminate

the nodes ', 1 < k < n, friom the hiner product. This requires 0(m) arithmeic operations

and yields the Foitirer coeflicients of the desired interpolating polynomial p,,|-m.. The Fourier

coefficients of the least squares approximnants P,,- E Hl11_ with n < rn are. of course. a subset

of the lollriel' coellicieltS of I'n-i

A scheme closely related to the one outlined above can be used to colpute trigonometric

poly 11111ials rapidly. Let :k. al .i :' be the ito d,' i- ttoduced above, ai define Ok := arg( Z),

I k < tit. aud 0' arg(1). < k < i,. k.\-o ,,lme that in is odd. i.e.. to = 2r+ 1. Let

11



f(O) be a real-valued fminction cdefined alt tlIC notl(s Ok and 1let f(9O.) :=0. 1 < k < K. We? wish

to compute a trigonometric polYnornial 1(0) E -,I)An{1.cos 0.... ,cos rO.sin 0.. snr0} that

minimizes thle sumn

k= I

This can be accomplished as follows. First solve the mninimiization problem

-'Ck=1 N I

by the FFT algorithm in 0(in log m) arithmnetic operations, and denote the optimal coefficients

by &j. Remove the niodes 0', 1 < k < , by applyinig tile dowvndating scheme x timles to the

polynomial l32"+(:)i QzJ, where N - I = 2r + n. This requires 0(mn) arithmetic

opecrations and yields the lpolYInoinial 1)2, E H2~,.. Thec desired trigonometric polynomial is then

given by t(0) := 'r() = vxp(if).

4 Computed examples

We now present the resuilts of somni numerical expedineitts with our downdating procedure.

These experiments were perforined in 170 IiA N on a SparcStation S LC at Northern Illinois

University, onl which there are approximiately 7 anmd 16 significant decimal dligits in single-

precision and double-plrecision calIcula tionis, res l)cCtivel.

The first set of experiments compares tile acciiracy oh the downdating procedure with that of

the ii)dating procedu Lre [UQit described in [8). \e iniput N unimodular nodes {z;~,positive

weights {w]}' 1, anld Comnplex funlction values {f( :j)\ 1. For any positive integer in < N, let

a. denote the vector of Fourier coefficients of the soluition 1),_1 of (1.6) with n = in, and let

Sg, denote the vcctor of Schur parameters determined by the iner product (1.1) and recurrence

relations (1.2)-(1,3).

We first compute vectors iN~ and ANV using ani impllemnentation of thle IUQR algorithm in

single-precision arithmet ic [S]. We then repeatedlY apply a single- prec isioni implementation of

Algorithin 2.1 to compute i,, and &m for (lecrvasimig values of m. The kill application of Al.

Mlorithi 2.1 removes m li node :\--Am froi the innorem prodliet to corn put e thme soluitionl of ( 1.6)

with it: in,* N - k. After vach dowvndatiig Nm "p, we calculate the relative error in fir, i.e.,

Ia,, - am 112/I1amII12, and the error iII jn i~e, 11g,,, - j,,,112, wvhere l1xll12 denotes thle Euclidean

normn of x E C7.. We also solve each p)roblemu of ordler mn using the IUQR algorithmn iii single-

precision arithmetic and compute the resulting errors. The results of the IUQR algorithm in

12



(louIble-I)Icision arithmectic arc used ai exact answers in the error calculations. Thco following

tables display the resulting errors for the dowtidating procedure (DD) and the updating proce-

dtire ( UD). In all of the experiments, each function valute f(z1 ) has its real part and imaginary

part randomnly generated accordig to a uiniform distribultiorn in f5 ]

We first choose the nodes to be the N :=300 roots of unity zi : exp(2iri(j - 1)/N),

1 :5 j 5 N, and uiniform weights t : 1. Table 1 shows the errors for problems of order
*V

in :=N - k for various values of k. Table I also showvs the results with the same choice of nodes

and weightts, except that the nodes are permuted in a random way. This permutation changes

the todes that arc deletedl as well as the ordler in which the nodes are added in the updating

*provedutre. It shouid bev noted that Lte errors in Lte (lowndating procedure can be expected to

iticrease as k increases. Titble *2 shiows thtat, simuilar results are obtained wvith the same set of

ntodes and randomnly generated weights inl (0, 10 ),

Table :3 shows the results obtained with uniform wveights and N :=300 nodes Z,

Q'X)('ri(j - 1)N). I < j S A" (l 0,7), both in their original order and in a random order.
Here again, the dowvndating procedure lperfoi in, \veil.

Table 4 shows the results when the initial :300 nodes are randomly selected points on the

uinit circle. In this example, the error inl the do'vndating procedure displays a sudden increase

ait k = 10. fIn this step Lte error in the conmpted (lowndated weight, la, - &Jl, was greater than

10-1. Observe that thle error. inlcurred at this dowtidating step propigated to the subsequtent

(lownIdatig steps. be r the errors inl 5,, an~d -wein to grow gradual!Y ats k~ increases, i.e., as

M : N - k decreases. Otheri exp~eriments wit It r'andlom niodes produiced siilar results. It

slimiuld be noted that inl our experimients. a larlge error in the comnputed weight did not always

coinicide wvith a large jumip in Lte errors in i,, and g,,,. It is clear that miore work needs to be

donte in order to understand the numerical aspects of the updating and downdating p~roblems.

Our final experiment tests the accuracy and speed of the procedure described in Section

3l for downdcating the FTT'1he N-point FFT is uised to obtain the Fourier coefficients of the

interp~olating p~olynomnial M1,i. A randomtly selected set of nodes is thuen removed from the

illier jprodllct tisig A lorit iiin 2. 1. Thik (xiperiunet was ruin with a radix-2 FFT suibroutine in

,;i iule precision aritimetic wit Ii N := 1021I anud N :=20,1S. Table 5 shows Lte computed error

alter k dowtudating steps for- various valuecs of k,. As above, we use the results of the IUQII

alg-oritlun inl double precision auji inuetic as exact answers for error checking. We also display

thle amlounlt of CPU timle requliired by the FFT with k downdating steps and the time required

13



Table 1: 300 nodes with equispaced arguments in (0,2-,r); uniform weights.

nodes in order ut increasing argunicit. Tinodes inI random order.
relative error III% its, error III g'1 relative error ini A,,, error in A

k D)D 1. ) DD L:D D D U D DID U D
0 U. 1221;-03 U. 122L.O;0 .~ .126E-03 0. 1261,-- 0.1 0.28'IE.04 0.284E-04 0,34OE-04 0.340E-04l

10 0.1-11E-03 0. 121L-03 0.29.5E-03 U. I IUE.03 0.35E-04 0.200.1 0.545E-04l 0.3.IOE-0'l
20 0.I14 1E-03 0.113E-03 0.405E-03 0.14$E-03 0.'473E-04 0.314E-04l 0.211 E-03 0.36IE-04
30 0.11-5E-03 0.I100E-0:3 0,322E-03 0.l1lIE03 0..550JE.041 0.272E-04 0,272E-03 0.331E-04
40 0. 112E-03 0.06 TE-0.l 0.3,10E-03 0.1-55E.03 0.0913E-.04 0.257E-O.1 0.35DE-03 0.374E-04
50 0.112E-03 0.040E-14 0.32DE.03 0.l6-IE-03 0.964&.04 0.259E.04 0.325E-03 0.437E-04
70 0-124E-03 0.102E-03 0.578E.03 0.17IE-03 0.174E-03 0.258E-04 0.424&-03 0.422E.04
00 0.132E-03 0.105E-03 0.725E-03 0,173E-03 0.254E-03 0.235E-04 0.677E.03 0.422E-04

110 0. 15-1IE-03 0.107E-03 0.305E-03 0.164E-03 0.375E-03 0.238E-04 0.753E-03 0.383&.04
130 0,151E-03 U. 117 C-03 0,28DE.03 0.160E-03 0.465E.03 0.22GE-04 0.10DE.02 0.3.59E-041
150 0.l(6E.03 0.l12 7E-03 0.32.IE-03 0. 150E-0:1 0.600F,03 0.186E.041 0.119E-02 0.463E.04

by thle sinigle-prccisionl IUQIl algorithmi onl the prohblem of order m = V - k, It is inateresting to

iiote thiat tie lowi(ld t ing pieced irei ped IlIceS sii b.tantially more acen tate .11nSWCUS faster titani

the IUQIL algorithin (2vQe for' moderately sizedl valtics of k,

5 Conclusion

Now algorithmis are presented for discrete least squares approximation by -,ilgebraic poly-

noinials oil the uniit circlc and by trigonometric piolynomials. The algorithmns downdate the

approxinint as well as recurrence coefficienits for Szcg6 polynomials when a node-abscissa pair

is removed from the imner p~roduct. The scheines are based on the QR algorithm for unitary

Hiessenberg matrices. A particularly attractive ap~plication is to combine our algorithrr for

trigonometric p)olynlonia~ls with the fast rottrier tranisformn algorithm. This yields5 a fast schemec

fr computing trigonomectric least squares approxiinants whten the nodecs of the inner product

forin a subset of equidistant nodes onl (0, 2- .



Table 2: 300 nodes with equispaced argunients in (0,2-,); random weights in (0, 10)

tiodes in order of increasing argunent, nodes in random order.
relative error in i. error ill i, I relative error in a, error in m

* k DD UD DD UD DD, UD DD UD
U 0.207E-03 0.207E-03 0.2,1.4E-03 0.2.1-1E-03 0.511E-04 0.511E-0.1 0.572E-0'4 0.572E-04

10 0.206E-03 0.183E-03 0.335E-03 0.181E-03 0.563E-04 0.537E-0,l 0.844E-04 0.744E-O.1
20 0.199E-03 0.17,1E.03 OAI 7E-03 0.192E-03 0,62OE-04 0.512E-04 0.140E-03 0.722E.0,1
:30 0.187E.03 0.173E.03 0.36'2E.03 0. 198E.03 0.785E.0.1 0.518E-0,I 0.252E-03 0.750E-0,1
,10 0.18SE-03 0.179E-03 0.3,1OE.03 0.203l,.0:J 0.873E-04 0.509E-0,1 0.303C-03 01730E.01
30 0,1SIE.03 U.IG71-0; 0.33,1E.03 ().2091.0;3 0,308E.03 0.487E-0.1 0.,IE-U3 0.714E-0.1
70 0.201-03 0.169,1'-0;) 0O,1E-03 0.217E-03 0.406E-03 0.479E-01 0.62.E-03 0.0381-0.
90 0.1921-03 0 .13E- 0.765E-03 0... >.'.0:1 0.572E-03 0.442E-04 0.178E-02 0.688E-01

110 O.IuSE-03 U.153E-03 0.380E-03 0.2201-03 0.874E.03 0.333E-04 0.1841-02 0.533&0,1
130 0.2U0E-03 0.155E-03 0.341E-03 0.213E-03 0.894E-03 0.286E-01 0.13DE-02 0,401E.0,
150 0.201E-03 0 u160E-03 0.379E-03 0.195E-03 0.122E-02 0,256E-04 0.153E-02 0.285E-0.1

Table 3:; 300 niodes with equispaced arguments in [0, r); uniforll weights.

nodes in order of increasing argument. nodes in random order.
telative error i a,,l error inm relative error ill n error in , ln

k DD UD DD UD DD UD DD UD
0 0.398E-03 0.398E-03 0.7.12E-03 0.7.12E-03 0.125E-03 0.125E-03 0. 16E-03 0.116E-03

10 0.455E-03 0.398E-03 0.188E-02 0.7-13E-03 0. 125E-02 0.101E-03 0.106E-02 0.124E-03
20 0.437E-03 0.389E-03 0.187E-02 0.720E-03 0.1,14E,-02 0.112E-03 0.146E-02 0.122E-03
30 0.4521E-03 0.390E-03 0.228E-02 0.71,1E-03 0.1701€E-02 0.110E-03 0.163E-02 0.131103
40 0.479E-03 0.391E-03 0.265E-02 0.694E-03 0.195&.-02 0.947E-0', 0.167E-02 0.113E-03
50 0.508E-03 03911E-03 0.271E-02 0.68)E0-03 0.215E-02 0.886E-0,1 0.165E-02 0.109E-03
70 0.576E-03 0 .1311E-03 0.27SE-02 0.6,15E-03 0.251E-02 0.796E-04 0.210E-02 0.109E-0:1
90 0.533E-03 0.45013-03 0. 168 E-02 0.605E-03 0.367E-02 0.849E-0,1 0.302E-02 0.106E.03

110 0.558E-03 0,.1:5E.03 0 193E-02 0.55: OA58E-02 0.795E-0,1 0.367E-02 0.102E-0.1
130 0.6501-03 0 1231:11 ( 21(1, E02 0 3)3 "F- 0:1 0.528E-02 0.792E-01 I (.339E-02 O.8,1E-O,1
150 0.1 -02 0 1 0 356E-02 0 6Eil-03 0.671E-02 0.548E-0,1 0.52E-02 0.895F_,-0.1
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Table .L: 300 nodes with random argiuULmts it, (0,2fr); uniform weights.
rIlative error m A, error m gin

k I)D I1) ID UD
(I I I111-03 0. 11 L-;3 0 'J25C.03 O.925E-73

O 50L-03 u. 0IU1.03 0.91,4E.03 0.838E-03
10 0 21SE-01 0.100.03 0.318E.01 0.838E-03
20U 0 22E.01 U.129 E.03 0.373C.01 0.789E-03
30 0.220E-01 0 16 1E.0:3 0328E.01 0.735E-03
.10 0 111.01 0.1I7E-03 0.131E-01 0.826E-03
50 0.IS61-'.01 0. 12,1E .03 0.2,40E.01 0.654E-03
70 0 196E-01 0.1371E-03 0.2641E-01 0,658E-03
90 0 21OE-01 0.122E-03 0.275E-01 0.483E-03

110 0.3.17E-01 0.137 E-03 0.820E-01 0. 100E-02
130 0.502E-01 0.120E-03 0.852E-01 0.508E-03
150 0.513E-01 0.78E-04 0.865E-01 0.360E-03
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Table 5: Downdating the FFT

N = 1024 relative errojr inIt,, error in g.m CPU seconds
II k )D UD DD UD DD UD

1013 11 0..161E-)5 "213E-01 0.218E-05 0.204E-01 0.303E+01 0.118E+03
993 31 0.502E-05 0.215E-01 0.623E-05 0.195E-01 0.814E+01 0.142E+03
973 51 0.603E-05 0.217E.01 0.'12E-04 0.193E-01 0.132E+02 0.136E+03
923 101 0.900E-05 0.103E-01 0.257E-04 0.244E-01 0,253E+02 0.122E+03
013 111 0.9,14E-0,5 0.191E-01 0.265E-04 0.242E-01 0,276E+02 0.119E+03
803 131 0.111E-01 0,178E-01 0.312E-04 0,219E-01 0,323E+02 0.114E+03
873 151 0.12gE-0,1 0.17.1E-01 0.373E-0-1 0.220E-01 0.368E+02 0.109E+03
853 171 0.1,13E-0-1 0.172E-01 0.462E-04 0.221E-01 0.412E+02 0.104E+03
83. 191 0.172E-0.1 0.171E-01 0.566E-04 0,220E-01 0,456E+02 0.990C+02
813 211 0.223E-0'1 0.171-01 0.721E-04 0.241E-01 0,497E+02 0.941E+02
713 i11 0. I771"C-01 0. 1:33E.0 0. 1311 -03 0.169E01 0,692E+02 0.719E+02
(313 .111 0.167E-03 I.1OIE-OI 0,158E-03 0.275E-01 0.862E+02 0.527E+02
513 11 (.2671-03 o769E-02 0.527E-03 0.174E-01 0.101E+03 0.365E+02
,113 611 0.286E-03 0.I17E-02 0.,187E-03 0.852E-02 0.112E+03 0.233E+02
:113 711 0,37E-03 0-322E-02 0.554E.03 0.781E-02 0.122E+03 0.132E+02

N = 20-18 relative error in A,, error in j. CPU seconds
m k DD UD DD UD DD UD

2U037 11 0,598E;05 0,105L+0 0.259E-05 0.184E+00 0.391E+01 0.390E+03
1997 51 0.7,10E-05 0. 1IOE+00 0.151E-04 0.235E+00 O.172E+02 0.37.4E+03
1947 101 O.100E-0,1 0,102E+00 0.293E-0,4 0.164E+00 0.336E+02 0,355E+03
1897 151 0.1251E-0,I 0.980E01 0..126E-0.1 0.126E+00 0.495E+02 0.337E+03
18,17 201 0.159E-0,I (.9 ISE-01 0 6-12E-0, 0.131E+00 0.649E+02 0.319E+03
1797 51 0,2371.-0.1 0,681E-01 0.812E-0.1 0.136E+00 0.799E+02 0.301E+03
17,17 :,01 0 2 I01 1 0 865C-01 1) 1 IE-0: 0.157E+00 0.9,16E+02 0.285E+03
1697 351 0,351E-0 I 0,3,1E-0 0. 115 E.03 0.137E+00 0.109E+03 0,26SE+03
16,17 ,101 0.51,1.I>01 0 609E-0 1) 170E.03 0.125E+00 0.123E+03 0.252E+03
1397 1,)1 0 7,19E-0.1 0 7,181-01 0.2,12E-03 0.133E+0) 0.136E+03 0.237E+03
1547 501 0 779E-0', 0.729E-01 0,2431.1%03 0.132E+00 0.149E-O3 0.222E+03
1.1.17 601 0 953E-0.1 0,695C.01 0 :313E.03 0.149E+00 0,174E+03 0.19,1E+03
13,17 701 0.242E-03 0 628E-01 0,396E93 0.114E+00 0.197E+03 0.1'37E+03
11,17 901 0 517E03 0.113E.01 0.109E-02 0.116E+00 0.238E+03 0-.1E+03
1047 1001 0.731E-03 0.381E-01 0.113E-02 0.640E-01 0.256E+03 0.luOE+03
947 1101 0.114E.02 0.285E.01 0.183E-02 0.523E.01 0.273E+03 0.815E+02
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